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Abstract. We show that the distribution of the percolation threshold in a large finite system 
does not converge to a Gaussian when the size of the system goes to infinity, provided that the 
two widely accepted definitions of correlation length are equivalent. The shape of thedistribution 
is thus directly related to the presence or absence of logarithmic corrections in the power law 
for the correlation length. The result is obtained by estimating the rate of decay of tail of the 
limiting distribution in terms of the Correlation length exponent U. All  results are rigorously 
proven in the 20 case. Generalizations for three dimensions are also discussed, 

The p&colation phenomena have been the subject of many recent theoretical and 
experimental studies. Apart from their theoretical interest they serve as a guide for the 
understanding of a wide variety of applied problems such as transport properties of random 
media, spreading of epidemics and forest fires, statistical tomography and many others. The 
simplest percolation problem can be formulated as follows. Consider a periodic lattice in 
d-dimensional space whose bonds (i.e. edges) are occupied or vacant with probabilities p 
and 1 - p independent of one another. For a given realization of occupied and vacant bonds, 
two vertices of the lattice are called connected if they can be joined by a path consisting of 
occupied bonds. The'site percolation problem is defined similarly, but in this case it is the 
sites that are occupied or vacant, and two sites are connected if they are occupied and one 
can get from one to another by a path with steps of length one which visits only occupied 
sites. There are several other percolation models, with different notions of connectedness. 
In this paper we study short-range percolation models on a d-dimensional lattice, which, 
for simplicity, we will take to be the cubic lattice. 

It is well known (see [I I]) that for each d > 1 there exists~ a positive number pc  < 1 
(its value depends on d and the notion of connectedness) such that for p c pc, there are 
no infinite connected sets, while for p > pc a unique connected set .(also called the infinite 
cluster) exists. pc  is called the percolation threshold and is the value of the density of 
occupied bonds or sites at which the second-order percolation transition occurs. Since the 
percolation threshold pi') in a large system of linear size L (defined below) is a function 
of Ld independent random variables (bonds or sites) one may ask whether the analogues of 
the law of large numbers (LLN) and the central limit theorem (CLT) hold. We show that this 
is indeed true for the LLN, namely as L + CO, PA') converges to the non-random number 
pc.  One may expect that this analogy with classical probability results extends to CLT, i.e. 
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that the distribution of pAL) normalized by its standard deviation converges to the Gaussian. 
Such claims (based on numerical simulations) have indeed been made in the literature [9] 
(see also [22]). 

In this paper we present conditions under which the distribution of pi‘) does not become 
Gaussian in the L -+ 00 limit. We note that knowledge of the limiting distribution is crucial 
for the proper interpretation of numerical estimates of the critical density, obtained from 
numerical simulations. Indeed, the decay of the tail of the limiting distribution determines 
the confidence interval for such data. We present the conditions under which the tail decays 
slower than that in the Gaussian case, which implies that the interval will be wider, i.e. the 
numerical data will be more spread around the actual value of pc  and, consequently, the 
data have to be interpreted with more care than in the Gaussian case. 

An alternative view on the percolation transition, which is especially useful in the study 
of two-dimensional models is provided by the crossing probability defined as the probability 
z ~ ( p )  that there exists a connected path linking two given opposite faces of the cube of 
side length L ,  centred at the origin. If p < pc  then a ~ ( p )  + 0 as L + CO exponentially 
fast, i.e. 

(1) 

If p > pc  then 1 - q ( p )  + 0 as L + CO. This convergence is known to be exponential 
in all dimensions [6,12]. The function $ ( p )  is a widely used definition of the correlation 
length, which is a central quantity in the study of the percolation transition. There is another, 
very convenient definition ‘(see [4]): fix a number E 0; for p < pc ,  let LO = Lo(p ,  6) 
be the smallest L for which a ~ ( p )  c E ;  for p > pc, let LO be the smallest L for which 
q ( p )  > 1 - E .  Even though Lo depends on the choice of 6, it was shown in [I71 that 
for two different values of E ,  Lo(p, E ; )  x Lo(p ,  E Z ) ,  that is the ratio Lo(p ,  E I ) / L o ( P ,  €2) is 
bounded away from 0 and CO in a neighbourhood of pc  for any short-range two-dimensional 
model. It was also proven in [17] that in two dimensions L0(pc - y ,  E )  x L0(pc + y ,  E )  

as y 0. For d > 2 there are no rigorous results but, according to the usual scaling 
assumption, as p -+ p c  from above or from below the correlation length should behave as 
( p  - p,)”+ or as ( p  - pc)”- ,  respectively. The values of U* have been calculated numerically 
for various models [22,16] and found to depend only on the dimensionality of the system; 
moreover U+ = U- with high accuracy (note that in two dimensions this follows from the 
above relation L 0 ( p c - y .  E )  x Lo(p.+y, E ) ) .  However, one cannot exclude the presence of 
logarithmic corrections in the asymptotics of the correlation length as p + pc.  Logarithmic 
corrections, indeed, appear in the theory of critical phenomena (see [IS]). While they are 
usually present at the upper critical dimension of the studied system, there are no numerical, 
experimental or theoretical grounds to rule them out here. In fact, it is not even known 
whether $ ( p )  x Lo(p) .  As we will see, if 5 and LO are asymptotically equivalent, then the 
(normalized) random variables pbL) cannot have a Gaussian limit. The following procedure 
is used to numerically find the value of pc  for a given percolation model (see, for example 
[7,22]). We will describe it for the bond model to illustrate the ideas; the analogues for 
the other models are obvious. Take a cube of side length L with all bonds occupied and 
start deleting them at random until the connection between a fixed pair of opposite faces 
is broken. Calculate the fraction of the remaining bonds (i.e. their number divided by the 
number of all bonds in the cube) and denote this fraction by pi”’. This is our finite-volume 
percolation threshold. It is a random variable since it depends on the realization of the 
bond deleting process (i.e. in computer experiments, on the generated sequence of random 
numbers). Since a connection is highly improbable for p < pc  and highly probable for 
p > pc .  the fraction of bonds remaining when the connection has just been broken should 

1 
L-m L - lim - logxL(p)  = $ - ‘ ( p ) .  
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be approximately equal to pc. It can indeed be rigorously shown that p!') + pc as L + 00 

in probability, i.e. for any 8 > 0 

(2) 
This is done in [3] by an argument which applies to any short-range percolation model in 
an arbitrary number of dimensions (> 2). The nature of the fluctuations of pi') - pc  is a 
much more subtle question which we now discuss. We are first going to find the asymptotic 
behaviour (scaling) of the second moment of p:') - pc as L + 00. The idea is to use the 
well known formula [SI 

Prob(lp!" - pcj >. 8 )  + 0 L + 03. 

CO 

E(X2) = 1 2yP(IXI > r )dy  (3) 

which expresses the second moment of a random variable in terms of its distribution 
function. We emphasize that the formula is true for arbitrary, possibly discretevalued, 
random variables. Applying this formula with X = ~ 2 ~ )  - pc, it is clear that lower and 
upper bounds~of the same order on P(lp:') - pCl > y )  imply bounds on E(($)  - pC)') 
differing just by a multiplicative constant, independent of L,  i.e. they determine the scaling 
ofthe second moment. Now, P(lp:')-p,l 2 y) = P(p:" > p,+y)+P(p:') < p,-y). To 
understand the nature of the above quantities let us look, for example, at P ( p t L )  < pe - y). 
This is the probability that. when removing bonds at random, a left-to-right (L-R) connection 
persists, even when the fraction of the remaining bonds is pc-y. It is therefore quite natural 
that 

(4) 

(5) 
We emphasize that the probabilities on the left-hand sides of these approximate inequalities 
are to be understood in the sense of randomly deleted consecutive bonds, while on the 
right-hand sides they are calculated in the percolation model with density pc f y. These 
approximations can indeed be precisely formulated and rigorously justified. We refer the 
reader to [3] for details. which lead to the following second moment bounds 

 PP < pc - Y) x ZL~P, - Y) 

~ ( p : ' )  > pc - y) x I - rL (pC + y )  

as L ,+ 00 

and similarly 

as L + 00. 

with the constants 0 < c < C < 00 independent of L. This suggests a connection between 
the second moment bound and the correlation length LO. Although formula (6) is true in 
any dimension, we have control over n L ( p )  only in two dimensions so our result about the 
second moment of - pc is limited to this case. The lower bound is obtained by simply 
disregarding the second integral on the left-hand side of 6 and restricting the first integral 
to the interval (0, yo(L)), where yo is the function, inverse to Lo, i.e. Lo(yo(L)) = L (we 
are henceforth fixing a value of E and suppressing dependence on E in the notation). This 
means that we are taking contributions only from those y for which L is smaller than the 
correlation length Lo(pC - y). For y in this interval n ~ ( p )  2 E ,  and we obtain the lower 
bound 
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Note that this bound holds in any dimension. To get a similar upper bound let us first 
consider l," y n ~ ( p ~  - y) dy = JF(L) y x ~ ( p ,  - y) dy + yir~(p.  - y) dy. The first 
integral is, of course, bounded by iy&) (because i ~ ~ ( p ~  - y) < 1). To estimate the 
second integral, we use the rescaling lemma [l], which says, in essence, that in the 2D case 
if for some LO, nro(pC - y) < E ,  where E < 1 is a suitable constant, then for L > LO, 
n'(pc - y) < ir~, , (p ,  - ~)c('/'~) < exp[-cl IogslL/Lo] with c independent of L and p .  A 
fundamental statement of the scaling theory is that as y + 0, L0(pc - y) behaves as y-", 
perhaps with a logarithmic correction. By a direct asymptotic calculation one can check 
that in both cases (with or without the correction), 

L Berlyand and J Wehr 

1'' Y ~ L ( P ~  - Y )  dy < CY&)'. (8) 

More generally, the above bound was verified in [3] for a large class of functions Lo of 
the form of the pure power multiplied by slowly varying functions ([lo], ch 8.8) which 
grow slower than any power and thus include logarithmic corrections. This completes the 
estimate of the first term on the right-hand side of (6). The second term is estimated exactly 
in the same way, using the above-mentioned equivalence of L0(pc + y) and Lo(p,  - y). 
The conclusion of the above is 

Y O G I  

CYO(L)Z < E ( @  - P 2 )  < CYO(L)Z (9) 
with two positive constants c and C, independent of L.  Let us note that if L& - y) 
and L0(pc + y) are both equal to y-" up to a multiplicative constant, then ~ o ( L ) ~  = L-2/" 
and we recover the expression given in [9,221 for the Var(pAL') = E[(p:') - E ( P ~ ~ ) ) ~ ] .  
If we normalize pi') - pc by yo(L), we thus obtain a sequence of random variables with 
bounded second moments. This brings us to the question of the limiting distribution of 
these normalized variables. We remark here that in the spirit of the classical central limit 
theorem it is slightly more natural to study the limiting distribution of pAL) - E ( p t L ) )  rather 
than piL)  - pc. Although in the two dimensions bond model for a square box they are 
exactly the same because of self-duality [ I l l ,  in general they are different. For technical 
reasons we shall first study pLL) - pc and then return to pi') - E(&)) .  It is shown in [3] 
that the sequence (or at least subsequence) (p:" -p,)/yo(L) indeed converges to a limiting 
random variable Y which is not constant (i.e. the limiting distribution is not trivial). We 
want to study the probability P(Y > ~ y )  for large y, in order to gain information about the 
tails of the distribution of Y. To this end, let us use the correlation length .$ introduced 
above. Its definition roughly expresses the fact that as L + CO, i r ~ ( p )  (or 1 - ~ ' ( p ) )  
decays exponentially with the rate l/c(p). This does not imply that a'@) behaves like 
e-L/t(p) but inequality in one direction is known in 2D. Namely, there exists a positive 
constant, independent of L and p ,  such that 

i~L(p)  2 Ke-'J<(P) for p < pc  (10) 

1 - irL(p) 2 Ke-L/"'J) for p 2 pc (11) 

and similarly 

(we owe this bound to L Chayes, see [3] for details). It is also known [4] that for p c pc 

for some constants a and b, independent on p ,  where LO is the correlation length introduced 
earlier. It is natural to ask whether the upper bound in the above inequality can be 
strengthened to the form constant c ( p ) ,  i.e. whether one can remove the logarithmic 
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correction. This is a difficult open question, which is physically relevant. In particular, 
we will show that the absence of the logarithmic correction implies that the distribution of 
piL) - pc)/yo(L) does not converge,to a Gaussian as L -+ CO. For any L we have 

(13) 
and, if f ( p )  x Lo(p), the right-hand side is bounded below by Ke-w”smt Y”, possibly with 
a logarithmic correction in the exponent. Now, the numerical value of Y in 2D is close 
to 4 and the value 4 was also obtained by conformal field theory calculations [Z]. This 
would imply that the tail of the limiting distribution decays slower than that of a Gaussian. 
Alternatively, one can obtain from inequality (13) a lower bound on the moment generating 
function of the limiting distribution Y: 

E(efY) K exp[constant t(”’”-’)] (14) 

E(e“) - exp[constant tZ] ~ as i + CO. (15) 

which excludes a Gaussian since U e 2 and for a Gaussian variable r 

Finally we remark that the same analysis with some minor technical modifications 
applies to the ‘natural’ physical variable PL = [PA” - E(p:”)]/a~, where a L  is a 
proper normalization, for example a L  = J(Var(p2“) - E(pLL)))). To summarize the above 
argument: equivalence of the two definitions of correlation length implies that the limiting 
distribution of the finite-volume percolation threshold is not Gaussian and provides an 
estimate (14) on the tail of the distribution. Or equivalently, if the limiting distribution is 
Gaussian, then the two correlation lengths have to differ by a divergent factor. The Gaussian 
behaviour was indeed reported in [9] (as shown in [3] it also follows from statements in 
[22]). At present we are unable to provide a rigorous answer to the question of equivalence 
of LO and [. Most of the above applies, from the rigorous point of view, only to 2D models, 
since it depends on several (highly non-trivial) results which so far have only been proven in 
two dimensions. A generalization of the above results to d > 2 is. however, so interesting 
that it deserves mentioning. 

(i) The ‘law of large numbers’ carries over to any d ,  together with exponential bounds 
on the rate of convergence (large deviation probabilities), the form of which depends now 
on whether we are above or below pc. More precisely, up to power-law corrections in L 
we have 

(16) P ( ~ : L )  < pc - 6) = exp ( - c ~ / t  (p. - i)) 
and 

P ( p p  > pc + E )  = eXp(-K(€)Ld-‘). - (17) 
Proofs of these statements rely on analogous bounds for the crossing probabilities q. 

While the first bound follows from standard estimates in the subcritical region (see e.g. 
[ll]), the second bound is non-trivial [SI (see also [23])) and at the time of writing 
there seem to be no rigorous results about the behaviour of K(e)  as E + 0. We shall 
however, explore the consequences of the physically plausible assumption that K ( E )  behaves 
as constant(t(p, (an expression that depends only on the correlation length), which 
makes the quantity K ( E ) L ~ - ’  dimensionless and depends only on the correlation length e. 

(ii) If we assume in addition (in agreement with numerical results) that 

U+ = v- = v (18) 
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then we recover the previous asymptotics 
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B((P:" - P d 2 )  = YdLY 
provided that 

2 
w ' ; i '  

It is interesting that this condition, which emerges from a careful repetition of the estimates 
leading to (7). is identical to the Hmis criterion for the relevance of disorder in random 
ferromagnets [5,15]. As shown in [5,19], the weaker condition w > 2/d is satisfied in 
any dimension. For the short-range models considered here, numerical simulations clearly 
indicate that the sharp inequality holds. 

(iii) The bound 

in d dimensions would mean that the limiting distribution of (p;')- p=)/yo(L) is even more 
radically non-Gaussian than in two dimensions. The reason is that, ford t 2, w is less than 1 
and therefore the tail of the limiting distribution decays so slowly that its moment generating 
function is infinite. Its moments, pk, can be bounded below by a calculation analogous to (7) 
and it turns out that they grow so fast that they do not determine the distribution uniquely 
[20,21]. As d grows, v decreases and the tail of the limiting distribution of the finite 
volume percolation threshold becomes bigger. According to the well known prediction 
v = 1 for d 2 6. This was in fact proven for large d in [14]. Consequently, in contrast to 
dealing with extensive random variables (like energy or magnetization), the distribution of 
(p tL)  - p,)/yo(L) becomes extremely non-Gaussian above the upper critical dimension. 

(iv) When d t 2, due to the different forms of the large deviation bounds (16) and (17) 
below and above pc ,  it is possible that the limiting distribution of (pLL) - p,)/yo(L) is not 
symmetric. Indeed, it is not even known whether in this case the limit limL,,iTL(pc) lies 
strictly between 0 and 1. 
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